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An empirical model reduction method is performed on nonlinear transient convection
patterns near the threshold, using a pseudo-inverse-based projective method called
the pseudo-balanced proper orthogonal decomposition (PBPOD). These transient
patterns are large-scale amplitude/phase modulations in convection rolls, obtained
by prescribing selected spatial input-shape functions. For the nonlinear convection
patterns modelled, PBPOD appears to be very effective. Using the nonlinear front
example, PBPOD is compared with other existing methods, such as POD and
linearized BPOD. The limitations of the methods are discussed. Using a complex
prescribed input, complex disturbances are generated and the outputs of the open-
loop responses are compared between the original and the reduced-order models. The
agreement is good. A feedback-control study is performed using the nonlinear front
example. The controller is built by the pseudo-balanced reduced-order model, with
a low-order nonlinear estimator. Closed-loop simulations show that the nonlinear
travelling fronts can be effectively damped out by the feedback-control actions.
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1. Introduction
There are a number of studies in using feedback control to suppress Rayleigh–

Bénard convection in an unstable, static layer of fluid (Howle 1997; Tang & Bau
1998; Or, Cortelezzi & Speyer 2001; Or & Speyer 2003, 2005). However, there exists
a significant gap in the degree of stabilization between theoretical predictions and
experimental results. Theoretical models assume a spatial resolution refined to the
cellular level. Convection disturbances are assumed to be homogeneous in the layer.
In experiments, however, disturbances can be associated with large-scale phase and
amplitude modulation patterns (see Cross & Hohenberg 1993).

In practice, controller arrays targeting the cellular level of resolution are too large
for experimental implementation. Model order reduction of convection patterns in
the spanwise direction is of interest because it allows a faster and more compact
controller array to be built. In previous studies, model reduction was performed only
in the cross-plane direction. Therefore, an effective model reduction method in the
spanwise direction is desirable to have.
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Near the stability threshold, the large-scale modulation patterns are governed by a
nonlinear envelope equation (Cross & Hohenberg 1993). In the model, the solutions do
not depend on the cross-plane coordinate. An input/output version of this equation is
derived in the Appendix. The goal here is twofold. First, it is important to demonstrate
that, for the nonlinear large-scale dynamics, a low-order model can be constructed to
approximate the original full-order model for the given input and output effectively.
The low-order model is obtained from an empirical, nonlinear-based pseudo-inverse
projective model reduction technique called pseudo-balanced proper orthogonal
decomposition (PBPOD), in contrast to the linear-based balanced proper orthogonal
decomposition (BPOD). For the development of BPOD, we refer to Lall, Marsden &
Glavaski (2002) and Rowley (2005). In this study, the effectiveness of PBPOD is
demonstrated. Several representative patterns are generated from both the original
and reduced-order models and compared. In particular, the nonlinear front pattern
is used for a comparison between the PBPOD and other methods, namely, proper
orthogonal decomposition (POD) and BPOD with balanced modes extracted from a
linearized model, or the linearized BPOD. The limitations of the methods involved
are discussed. The open-loop performance is first demonstrated. Using a complex
spatial pattern and an arbitrarily prescribed input signal, the output generated by the
complex open-loop responses between the original model and the pseudo-balanced
reduced-order model (PBROM) are compared. The agreement is excellent.

Second, after demonstrating that we can effectively build a reduced-order model,
we perform a closed-loop study of the nonlinear feedback control of the large-scale
convection patterns. It is understood that building a controller design can be a
very elaborate effort. Here, for illustration, a direct intuitive approach is used. We
build a reduced-order, nonlinear estimator using a steady-state Kalman gain based
on a linear-quadratic-Gaussian-estimator model. The nonlinear estimator is used in
conjunction with a simple proportional feedback-control law. The nonlinear travelling
front is again employed as an example. The closed-loop simulations show that the
nonlinear front disturbances can be damped out effectively.

This paper is organized as follows. The numerical discretization of the continuous
system is highlighted in § 2. In § 3, the empirical pseudo-inverse-based projective model
reduction technique, PBPOD, is described in detail. In § 4, all the results in comparing
PBPOD to the original models are presented. In § 5, the feedback-control study is
given. Section 6 provides a conclusion. The input/output version of the amplitude
equation is derived in the Appendix.

2. The nonlinear input/output amplitude equation
According to (A 25), the amplitude equation with a prescribed input term is given

by

τ0∂tA = A + ξ 2
0 AXX − χ0|A|2A + γ b(X, t), (2.1)

where amplitude A(X, t) depends on a stretched coordinate, X (0 � X � L), and a
slow time, t (0 � t < ∞). The Appendix provides a full derivation of the equation. (In
the Appendix, T is the slow time and t is the physical time.)

The Appendix provides expressions for coefficients τ0, ξ0, χ0 and γ . For the purpose
of analysis, a rescaling of (2.1) is desirable to reduce the number of parameters. In
order to avoid using too many symbols, we retain the same variable notations in the
following canonical equations:

∂tA = A + AXX − |A|2A + b(X, t). (2.2)
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The normalized variables of (2.2) are (t/τ0) → t , (X/ξ0) → X, (A/χ
1/2
0 ) → A,

(χ1/2
0 γ b) → b and (χ1/2

0 yn) → yn, where the rescaled groups are indicated on the
left-hand side of the arrows.

The partial differential system is discretized and the fast Fourier transform (FFT)
is employed, with A(Xn, t) → A(km, t); and its inverse discrete Fourier transform
(IFFT), A(km, t) → A(Xn, t). The fundamental wavenumber is ∆k =2π/L. Also, for
a single-input–single-output configuration (SISO), we separate the spatial and time
components in the input, that is, b(X, t) → b(X)u(t). Upon discretization, we obtain
a set of N-coupled, nonlinear ordinary differential equations,

ẋ = Lx − N(x) + Bu. (2.3)

The state vector, x, consists of the Fourier coefficients as functions of time.
In the treatment of the cubic nonlinear term, N(x), we employ a well-known
pseudospectral technique, which calculates nonlinear terms by multiplications of
the discrete dependent variables in physical space at collocation points (Gottlieb &
Orszag 1981). We refer to § 3.3 for the equations describing the cubic nonlinear term.

The output corresponds to a single spatial-point sensor measurement at the mid-
plane of the layer, at the nth collocation point (see (A 26) of the Appendix)

yn(t) = g0

(
1
2

)
A(Xn, t). (2.4)

We denote the FFT version of the equation by

y = Cx, (2.5)

where C is determined by the explicit transformation of FFT and the value of g0 at
the mid-plane of the layer, z = 1/2.

We note that for nonlinear systems, the input-shape functions used to stimulate the
low-order dynamics of interest are not necessarily the input-shape functions to be
used for feedback control of the dynamics. For example, a function b(X, t) consisting
of a temporal impulse and a spatial pulse generates the nonlinear travelling fronts.
However, the shape function to be used for the feedback control of the fronts is a
different b(X, t) that depends on the PBPOD modes of the dynamics (see § 5 for more
detail).

3. Empirical model reduction for input/output systems
The proper orthogonal decomposition (Holmes, Lumley & Berkooz 1998),

commonly referred to as POD, is a snapshot-based technique to extract the low-
order modal structure to be used for a low-order projection of a large dynamical
system. For input/output systems, POD has been extended to include balancing
between the inputs and outputs (Lall et al. 2002; Rowley 2005). Rowley referred to
the method as BPOD. While the method has many variants, a glimpse of examples
can be found in Wilcox & Peraire (2002), Or & Speyer (2008) and Barbagallo, Sipp &
Schmid (2009).

3.1. Empirical balanced model reduction for linear time-invariant state-space systems

For theoretical discussion, we refer to large linear time-invariant (LTI) dynamical
systems as the following state-space systems (SS):

ẋ = Ax + Bu, y = Cx. (3.1)
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Balanced realization of (3.1) seeks a similarity transformation for the balancing
between controllability and observability (see Chen 1970). Finding a full-rank
transformation is laborious for a large dynamical system.

The snapshot-based empirical method seeks approximations of the controllability
and the observability Gramians. Analytically, these quantities are defined, respectively,
as Gc =

∫ ∞
0

exp(At)B B+ exp(A+t) dt and Go =
∫ ∞

0
exp(A+t)C+C exp(At) dt . A

balanced realization is achieved using the full-rank transformation T , with

SGcS
+ = Σ, T+GoT = Σ, S ≡ T−1. (3.2)

The diagonal matrix Σ has its entries ordered in descending magnitude. The entries
provide a measure of the energy content of the modes and is referred to as the Hankel
singular values (HSVs).

Many large dynamical systems display only a few significant HSVs. These systems
are good candidates for the empirical methods. Rowley (2005) demonstrates that con-
trollability and observability data blocks, X and Y , can be constructed using a smaller
number of snapshots. The empirical Gramians are defined by the data blocks as

Wc = XX+, Wo = YY+, (3.3)

where the empirical Gramians are good approximations of the exact ones, that is,
Wc ≈ Gc and Wo ≈ Go. Scherpen (1993) provides a good description on the subject of
Gramians, controllability and observability.

Rowley (2005) constructed the product Y+X for balancing. This quantity is identified
as the generalized Hankel matrix in (3.12) (see Or & Speyer 2008). For the linear time-
invariant state-space system (LTISS), H= Y+X can be expressed in closed form with
elements Hij = yj (ti) = C exp{A(ti + tj )}B. This relationship is the basis of balancing
and can be used to derive other variant algorithms for BPOD (see Ma, Ahuja &
Rowley 2009). For the LTISS, BPOD can be understood as the algorithm of finding
two sets of vectors, or modes (far less than those necessary to span the entire full
space) that simultaneously diagonalizes the pair of Gramians. The two sets are
typically distinct for a non-normal system. Assuming both N × Nc (with Nc � N)
blocks X, Y are available, then the SVD of H yields H= U1Σ1V

+
1 , with Y+X= H, the

SVD can be expressed as (
Σ

−1/2
1 U+

1 Y+
)(

XV1Σ
−1/2
1

)
= I. (3.4)

The singular values in the SVD of H are referred to as the HSVs. The above
expression contains two transformations which have an inverse relationship, S1T1 = I,
with

S1 = Σ
−1/2
1 U+

1 Y+, T1 = XV1Σ
−1/2
1 . (3.5)

Transforming the Gramians in (3.3) by direct substitutions, it can be verified that

S1WcS
+
1 = Σ1, T+

1 WoT1 = Σ1. (3.6)

We called the above results upper-block balancing. In BPOD, balancing refers to the
even stronger conditions. It can be verified by direct substitution that

WcS
+
1 = T1Σ1, WoT1 = S+

1 Σ1. (3.7)

Equation (3.7) yields the following eigenvalue relationships by direct substitutions,

(WcWo)T1 = T1Σ
2
1, (WoWc)S

+
1 = S+

1 Σ2
1. (3.8)

The above relationship indicates that S1 and T1 are, respectively, the left and right
eigenvectors of the product of the Gramians, WcWo, since WoWc is the transpose
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of WcWo. If both empirical Gramians are available, alternatively, S1 and T1 can be
obtained from the normalized eigenvectors by determining a weighting coefficient for
each eigenvector.

Depending on the sizes of the HSVs, BPOD allows further truncation. One can
extract the first Nr (where Nr <Nc) row vectors from S1 and the first Nr column
vectors from T1 to form (Sr , Tr ). The full-order LTISS, (A, B, C) can be balanced and
reduced to (SrATr , Sr B, CTr ). BPOD preserves this symmetric property because the
LTISS utilizes both controllability and observability data, whereas the latter requires
adjoint state information. Based on BPOD, Rowley (2005) demonstrated that another
pair of basis vectors (S2, T2) can be constructed based on (S1, T1) to complete the full
set. Let

S =

[
S1

S2

]
, T = [T1 T2 ], (3.9)

and impose the constraint ST =TS = I. One can either find the null-space of S+
1 or

T1. If we perform SVD on S+
1 and obtain the null-space as T2, then T= [T1 T2] and

S =T−1. BPOD produces block diagonalization of the Gramians:

SWcS
+ =

[
Σ1 0

0 Mc

]
, T+WoT =

[
Σ1 0

0 Mo

]
. (3.10)

3.2. Empirical pseudo-balanced model reduction applicable to nonlinear systems

For flow-control applications, what makes the empirical-based model reduction
technique attractive is that the number of dynamics states are typically much greater
than the number of snapshots. In this paper, we consider a pseudo-inverse projective
method for model reduction for input/output nonlinear systems of the following
form:

ẋ = f (x) + Bu, y(t) = Cx. (3.11)

Consider integrating the input dynamics equation above using the Dirac-impulse
function as the initial condition for u(t). The input vector B is generated by a
certain input-shape function b(X). A number of snapshots is collected to form the
empirical controllability Gramian (for its form, see (3.3) above). After performing a
singular-value decomposition (SVD) on this Gramian, it is determined that Nc (where
Nc � N) eigenvalues are energetic enough to be retained. Then, using each of the Nc

eigenvectors, Xj , also known as the input-stimulated POD functions, as the initial
condition to integrate (3.11) in time, with u(t) ≡ 0, we obtain Nc output values, yj (ti).
In general, POD functions can be stimulated by any initial conditions. The set of
snapshot vectors and the corresponding pseudo-inverse form the POD-based model
reduction transformations. We construct the No × Nc generalized Hankel matrix, H,
expressed as:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y1(t1) y2(t1) . . . yNc
(t1)

y1(t2) y2(t2) . . . yNc
(t2)

. . . .

. . . .

y1(tNo
) y2(tNo

) . . . yNc
(tNo

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Y+
1

Y+
2

.

.

Y+
No

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

[X1 X2 . . . XNc
]. (3.12)
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The above equation can be written as H= Y+X. For nonlinear systems (3.11), X and
H are empirical data and are known. However, Y+ is not to be known explicitly. We
retain the form (3.12) in the understanding that it is a natural extension of the LTISS.
In LTISS, Y is the observability data generated via the adjoint equation (see in the
following section), which has no parallel for nonlinear systems e.g. (3.11).

3.2.1. PBPOD for LTISS and the limitation of left upper-block balancing

For nonlinear applications, with (3.11), Y, and therefore the empirical observability
Gramian Wo, is not available from the empirical data. We will perform a projective-
type balancing, using BPOD as a guide, by utilizing only information available from
X and H. In this context, it is assumed that we have the controllability Gramian
but not the observability Gramian. Some authors linearize the system to obtain the
adjoint equations at selected points along the nonlinear trajectory. Then, the adjoint
equations are time-varying. This procedure can be elaborate. There are promising
concepts and algorithms developed in the applied mathematics arena, such as by
Krener & Hunt (2009) and by Scherpen (1993). These ideas exploit the path of
extending balancing results based on LTISS to nonlinear structures. However, the
complexity of the concepts and algorithms are significantly higher than PBPOD.
These complex schemes are of interest, but are too demanding for flow control
applications.

In this paper, we attempt to construct Y based solely on the knowledge of H and X
alone. The method is aided by pseudo-inversion and projection. To differentiate our
projective pseudo-inverse-based method from BPOD, we called this method PBPOD,
or projective BPOD. Since no adjoint states are propagated, an a priori assumption
in PBPOD is that the ‘balanced’ modes are both controllable and observable. All
the important observable modes are within the subspace of the eigenvectors of the
controllability Gramian. Omitted modes that are supposed to be highly observable,
but not very controllable, will not be retained in PBPOD.

When using LTISS for the evaluation of PBPOD, it is assumed that both X and Y,
and therefore the empirical Gramians Wc and Wo, are known a priori. Then, PBPOD
seeks to find a pair of transformations, (Sp1, T1). While T1 is picked to be the same
as that of BPOD, Sp1 has to be constructed based only on the knowledge of X and
H, with no knowledge of Y assumed. The imperfections of balancing will be assessed.
There are two methods to construct Sp1: (i) use Y+

p = HX# to replace Y+ and (ii)

use simply Sp1 = T#
1 where the superscript # denotes the Penrose pseudo-inverse. For

instance, for the N × Nc matrix X, its Penrose pseudo-inverse is defined by the Nc × N

matrix, X# = (X+X)−1X+, so that X#X= I. In either case, it can be shown that the
left-upper blocks of the Gramians are simultaneously diagonalized, with the same
HSVs as in BPOD,

Sp1WcS
+
p1 = Σ1, T+

1 WoT1 = Σ1. (3.13)

This result is equivalent to BPODs given in (3.6). However, one of the two stronger
conditions in (3.7) does not hold, which has an extra term. In the case of PBPOD,
(3.8) has to be modified by the extra term.

For LTISS, PBPOD achieves left upper-block balancing but not block-diagonal
balancing because, unlike BPOD, (3.13) holds, but the second of the stronger
conditions in (3.7) does not hold.

From the last expression of Sp1 on the right-hand side of (3.22), or from (3.23), we
have

WcS
+
p1 = XX+(X#)+V1Σ

1/2
1 = X(X#X)+V1Σ

1/2
1 = XV1Σ

−1/2
1 Σ1 = T1Σ1, (3.14)
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noting that X#X= I. By the same token, we have

WoT1 = YY+XV1Σ
−1/2
1 = YU1Σ1V

+
1 V1Σ

−1/2
1 = S+

1 Σ1 �= S+
p1Σ1, (3.15)

though, in both situations T+
1 S+

1 = T+
1 S+

p1 = I. By virtue of the constraint of (3.13), one
expects

WoT1 = S+
p1Σ1 + E. (3.16)

The error term E has to be in the null-space of T+
1 , that is, T+

1 E = 0. The limitation in
PBPOD is manifested in the lack of block diagonalization of the second equation of
(3.10).

For PBPOD, we construct the full set of transformations similar to BPOD, (Sp, T),
using (3.9). Replacing S1 by Sp1 and S by Sp , we observe that SpWcS

+
p is block

diagonal, but T+WoT is not. Based on (3.5), we observe T+
1 S+

p2 = 0. Therefore, E lies

in the subspace S+
p2. Write (WoT1 − S+

p1Σ1) = E = S+
p2q, where q forms the coefficients

of the column vectors of S+
p2. The non-vanished cross-diagonal blocks correspond to

the term T+
2 WoT1 and its transpose. We have

T+
2 WoT1 = T+

2 E = T+
2 S+

p2q = q. (3.17)

One can proceed to derive analogous expressions of (3.8), which will yield extra
terms, indicating that the pair (Sp1, T1) are not exact eigenvectors of the product of
the Gramians. It is true that the rows and columns of (Sp1, T1) are not eigenvectors,
but they can be considered as eigenvectors ‘contaminated’ with components from the
modes that have low energy content, and therefore, are being truncated.

3.2.2. Proof of the left upper-block balancing

In this section, we provide proof of the first term of (3.13) with methods (i) and (ii).
In the end, we will show that the two methods are basically equivalent. The second
term of (3.13) remains valid, if we assume Y and in turn Wo is available, as it will be
available for the case of LTISS.

To prove method (i), we note that H= Y+X= Y+
p X. In method (i), Sp1 is constructed

by using the same expression as in BPOD,

Sp1 = Σ
−1/2
1 U+

1 Y+
p . (3.18)

Using (3.18) and noting Wc = XX+, we have

S1WcS
+
1 = Σ

−1/2
1 U+

1 U1Σ1V
+
1 (X+X)−1X+(XX+)

X(X+X)−1V1Σ1U
+
1 U1Σ

−1/2
1 = Σ1.

}
(3.19)

This completes the proof of method (i).
To prove method (ii), we start with the matrix identity T#

1 T1 = I, after substituting

T1 = XV1Σ
−1/2
1 , we invert V1 and Σ

−1/2
1 so that they appear on the right-hand side of

the equation. Note that V1V
+
1 = I is permitted if V1 is a square Hermitian matrix. The

matrix identity can be rewritten as

T#
1 X = Σ

1/2
1 V+

1 . (3.20)

By definition, Wc = XX+. Multiplying both sides by T#
1 and substituting (3.20), we

obtain

T#
1 Wc(T

#
1 )+ = (T#

1 X)(T#
1 X)+ = Σ1. (3.21)

This completes the proof of method (ii) by using Sp1 = T#
1 .
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The proof of method (ii) requires U1 and V1 to be square Hermitian matrices, but
the proof of method (i), which resembles BPOD, does not. In BPOD and in method
(i) of PBPOD, one can pick the Nr -dominant HSV from the Nc-by-Nc H (Nr <Nc)
for block-balancing. In other words, one can perform truncation and then balancing.
In this case, U1 and V1 are rectangular, Nc-by-Nr matrices. In method (ii), however,
one has to perform balancing on the order of Nc, before performing truncation. With
a clear understanding of the differences, there is no need to introduce additional
notations associated with Sp1 and T1 to distinguish the two methods of PBPOD.
In each case, the Gramian transformations yield the left upper-block balancing
relationship (3.6).

Methods (i) and (ii) are in fact equivalent. For balancing at the order of Nc, it can
be shown that both methods (i) and (ii) are equivalent. Starting with method (i), we
have

Sp1 = Σ
−1/2
1 U+

1 HX# = Σ
−1/2
1 U+

1 U1Σ1V
+
1 X# = Σ

1/2
1 V+

1 X#. (3.22)

Now, starting with method (ii), provided that V 1 is a square matrix and is unitary,
we have

Sp1 = T#
1 =

(
XV1Σ

−1/2
1

)#
=

(
V1Σ

−1/2
1

)−1
X# = Σ

1/2
1 V+

1 X#. (3.23)

Both (3.22) and (3.23) produce the same balanced transformation for order Nc.

3.3. Nonlinear reduced-order model by pseudo-balanced proper orthogonal
decomposition

We take the original model, described by (2.3) and (2.5), to construct the PBROM. For
convenience, we denote the FFT and IFFT transformations as F and Fi , respectively.
PBPOD gives the pair of transformations Sp1 and T1. The state vector x of the
original model is then approximated by its projective version, x1, where

x1 = T1xr , (3.24)

where xr is the PBROM state vector.
The cubic nonlinear term is treated by the pseudospectral technique as mentioned in

§ 2 (Gottlieb & Orszag 1981). Multiplications of the nonlinear term are performed in
the physical space at the collocation points. In the physical space, if a1 approximates
a, where a = Fi x, we have

a1 = FiT1xr . (3.25)

The approximated version of the nonlinear term in Fourier space is

N1 = FΛ∗
a1

Λa1
a1, (3.26)

where the asterisk denotes the complex conjugate. The matrix Λa1
denotes a diagonal

matrix whose diagonal entries are given by the vector a1. The nonlinear PBROM
corresponding to the Nr -dimensional subspace with state vector xr (t), is given by

ẋr = (Sp1LT1)xr − Sp1 N1 + Sp1 Bu, y(t) = CT1xr . (3.27)

4. Results on pseudo-balanced proper orthogonal decomposition
The pseudo-balanced reduced-order model is based on PBPOD. We choose three

cases corresponding to different pattern shapes for a SISO model to demonstrate
the performance of the PBROM by comparing the envelope snapshots between
the original and reduced-order models. Case (i) consists of patterns of nonlinear
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front propagation, case (ii) with real envelopes generated by stable and unstable
wavenumber shapes and case (iii) with complex envelopes generated by stable and
unstable wavenumber shapes. Next, we perform an open-loop simulation using the
same arbitrary input signal to compare the outputs between the original and the
PBROM. Lastly, before completing this section, we compare the performance of
PBPOD to two other existing methods, POD and BPOD, applied to a linearized
model about a certain equilibrium of the nonlinear system. We refer to this as the
linearized BPOD.

We start by evaluating the PBPOD method using the cases (i)–(iii). A comparison
of the snapshots between the original full-order model and the PBROM is performed,
by separately integrating (2.3) and (3.27) in time. The performance of the PBROM
is determined by how well the reconstructed snapshots from the PBROM compared
with the original snapshots. Four cases are considered. The first three cases provide
comparisons of snapshots to demonstrate PBROM performance. A different input
shape, b(X), is used for each PBROM. The fourth case consists of two open-loop
simulations to determine how well the PBROM’s reconstructed transient responses
compared with the original model’s transient responses for a given input signal in
time.

The PBPOD uses the following parameters. The total number of integration steps
is Nt ; the number of integration steps between successive snapshots is set fixed at
Ni; and the number of snapshots, Nc = Nt/Ni , is set to be equal to 25 for all runs.
Since the singular values of the diagonalized Gramian entries are modified by the
nonlinear algorithm, we refer to these as the modified HSVs (MHSVs), as opposed
to the HSVs in the LTISS. Thus, 25 MHSVs are present in the upper-left blocks of
the two Gramians. After the upper-left blocks are balanced, the number of states
of the PBROM is further truncated from Nc to Nr . Here, Nr is the lowest number
of PBPOD modes retained in the PBROM for it to remain a good approximation of
the original model.

To avoid over-crowdedness of lines in the figures, all except for case (i), only the
odd numbers of snapshots are plotted. All the snapshots are sampled at same time
intervals of both original and reduced-order models. The implementation of PBPOD
is automatic and systematic. No heuristic assumptions are involved in the order-
reduction process. Using FFT, the nonlinear partial differential system is discretized to
a set of N = 512 nonlinear-coupled ordinary differential equations. This set is referred
to as the original model. The 512 states are the Fourier coefficients. The resolution
used here is significantly larger than what is required. Except for case (iii), second run,
a moderate original model size of N = 64 Fourier modes is actually sufficient for the
approximation of the envelope curves. A large N is used for demonstrating a dramatic
reduction in order and to ensure that all details are captured. The spatial increment
of collocation points is given by ∆ =0.05. For N = 512, it provides a layer length of
L =25.6. A semi-implicit Euler integration scheme is used, with an integration step
size of �t = 0.005.

4.1. Nonlinear front propagation

Equations (2.3) and (2.5) of § 2 provide the simulation system. In the system, input
vector B corresponds to a rectangular pulse-shaped function, with the pulse centred
at the origin (X0 = 0). The output vector C corresponds to the mid-layer temperature
at the collocation point with X = 0. A rectangular pulse shape provides a very rich
harmonic content. When used as an initial condition, the convection pattern evolves
into a front propagation seen in many experiments.
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Figure 1. (Colour online) Comparison of front propagation in original and
reduced-order models.

When linearized about the unstable equilibrium, A(X, t) = 0, the normal modes
consist of the sinusoidal functions. In the nonlinear solutions, the Fourier modes
are coupled via the cubic nonlinear term N(x). For the rectangular-pulse shape,
all the coefficients in the input vector B have comparable magnitudes. The output
vector C also has non-sparse coefficients. Both B and C are complex. Due to the
periodicity and the wrap-around property, the rectangular pulse can be wrap-around
using two rectangular half-pulses positioned initially at the two ends, X =0 and
X = L, respectively. Each half-pulse has width 2∆ and height 0.1/3∆ =0.67.

In time, the two half-pulses move towards each other and merge at the mid-point
of the layer. In case (i), we use Nt = 2000, Ni = 80 for both the original model and the
PBROM. The total number of snapshots is Nc = 25. The original model has N = 512
states and the PBROM has Nr =8 states.

In figure 1, the family of curves represent a total of 25 snapshots of a developing
front envelope, captured at sampled times with intervals of 80�t . Given a long enough
time, the front curves tend to the unstable equilibrium, A(Xn, ∞) = 1. In figure 1, the
agreement between the propagating front envelopes from the PBROM (b) and those
from the original model (a) is striking, apart from some small distortions at the
base and two ends of the PBROM plot. It suggests that the PBROM is a very good
approximation of the original model for the given input. The performance of the
PBROM is not sensitive to the sensor location as long as it stays away from the end
points.

As the first case presented, certain PBPOD diagnostics appear to be useful. For
case (i), the discrete-time square Hankel matrix H has dimension Nc = 25. Given the
PBPOD balancing of the upper block of the Gramians, both the Nc×N transformation
matrix Sp1 and the N × Nc matrix T1 are constructed (where N = 512, Nc =25) based
on the pseudo-balancing theory of § 3. Then, we perform further truncation to keep
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Figure 2. (Colour online) The first eight PBPOD basis functions of the evolving fronts
(order: (a)–(h)).

Nr MHSVs. This means that Sp1 is truncated to its first Nr rows and T1 to its first Nr

columns (Nr = 8). As stated in § 3, we have used the same notations, Sp1 and T1, before
and after the truncation for simplicity. The IFFT of T1 gives eight basis functions to
span the reduced-order space. The shapes of these basis functions are shown in figure
2, labelled T. All turn out to have an even parity. These functions are in different
orders of amplitudes and are not mutually orthogonal to one another. Their shapes
are significantly different from those of sinusoids. At least 64 or more sinusoidal
modes are required to expand the evolved fronts, but these 8 basis functions are
sufficient to approximate the fronts very well.

The pseudo-inverse, Sp1, provides the other set of projections needed. These
functions are shown in figure 3, labelled S. These basis functions are highly oscillatory
in a smaller scale. For the LTISS example (Or & Speyer 2008), the pseudo-inverse
functions can be directly compared with the corresponding set obtained using BPOD
(by integrating the adjoint equation). They look very different from one another.
The difference is consistent with the property that Sp1 can only diagonalize the
upper-block of the Gramians, but S1 can block-diagonalize the Gramians.

It is determined that Nr = 8 is the minimum for PBROM without causing the fronts
to develop significant distortions.

4.2. Envelope solutions stimulated by real input sinusoids

In the next two cases, (ii) and (iii), we consider two simulations, one at a small
wavenumber, Ks (stable), and the other at a larger wavenumber, Ku (unstable).
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Figure 3. (Colour online) The corresponding pseudo-inverse basis functions of the evolving
fronts (order: (a)–(h)).

For both wavenumbers, linear disturbances grow. However, the stable (unstable)
wavenumber refers to the stability of the finite-amplitude solutions admissible as
steady states. A stable (unstable) wavenumber is within (outside) the Eckhaus stability
boundary. For the discrete system, the wavenumber is not a continuous parameter,
but assumes discrete values. For N = 512, we pick Ks = ±∆k and Ku = ±4∆k , where
∆k is defined in § 2. We have 1 − K2

s = 0.939 and 1 − K2
u = 0.032. For case (ii), a

real spatial cosine shape is an even function (1 − K2)1/2/2N exp(iKX) + c.c., where
K = Ks for the first run and Ku for the second run. FFT is performed to generate the
input vector B. The output vector C remains the same as in the case (i). For a single
wavenumber, B is highly sparse. We simulate the background noises by padding zero
entries of B with real, small zero-mean random Gaussian numbers, with standard
deviation of 10−4, but with a known seed in the simulations.

Note that a real sinusoid envelope is not a steady-state solution of the amplitude
equation. A real envelope solution implies that A(X, t) has a zero phase. If we express
the complex amplitude with a real magnitude and a real phase, i.e. A(X, t) = |A| exp iΘ ,
then no spatial change in phase can occur in the evolving solution. For zero-phase
solutions, at least three equilibria are identified, A= 0 (static no-motion state) and
A= ±1 (homogeneous convection state). There exist other equilibria as well (see
figure 4).

We use Nt = 3750, Ni =150 and 25 snapshots are obtained for the PBPOD. Figure 4
shows how the initial shape evolves from an unstable static equilibrium to a stable
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Figure 4. (Colour online) Comparison of the original envelope solution with the PBROM
solution (stable wavenumber).

equilibrium with spatial variation with the shape of an inverted hat-shaped envelope.
Figure 4 shows that the snapshots of the PBROM (b) agree very well with those
of the original model (a). The PBROM retains only four states (Nr = 4). All four
PBPOD basis functions resemble the hat shape, despite the difference in the signs and
amplitudes (not shown here). The corresponding pseudo-inverse basis functions are
very oscillatory, as in the case (i). If we do not use these four PBPOD basis functions,
but use four sinusoids instead, the evolved envelopes shown in figure 4(b) do not
agree with those depicted in figure 4(a).

In the second run, with an unstable wavenumber, the transition from the unstable
to the stable equilibrium is captured over the same period of time. Again, we use
Nt =3750, Ni = 150 and 25 snapshots are generated. With background noises, the
sinusoid is unstable and will evolve into a shape which is affected strongly by
the Eckhaus instability. In figure 5, the envelope solution evolves from A(X, 0) = 0
to A(X, ∞) = −1. Unlike the stable-wavenumber case, this solution requires more
number of reduced states for resolution. For Nr = 15, the reduced-order solution
agrees with that of the original model solution very well. For fewer than 15 states,
noticeable differences occur in the two plots.

4.3. Envelope solutions stimulated by complex input sinusoids

As in the case (ii), the input stimulation corresponds to a sinusoid; however, a
complex sinusoid is used this time. Wavenumbers Ks and Ku are used for the first and
second run, respectively. Unlike case (ii), the complex sinusoid means that the Fourier
coefficients do not occur in conjugate pairs. The only non-zero complex coefficient is
given by (1−K2)1/2/N exp(iKX). If the factor 1/N is removed, then this is actually an
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Figure 5. (Colour online) Comparison of the original envelope solution with the PBROM
solution (unstable wavenumber).

exact solution of the amplitude equation. The complex envelope shape modulation,
with the basic rolls exp(ikcx), corresponds to the modulated rolls exp(i(kc +εK)x) (see
Appendix). The modulation is a shift in the wavenumber of the rolls from its critical
value by εK .

Two runs are performed for the complex case, one at the stable wavenumber K = Ks

and the other at the unstable wavenumber K = Ku. The input vector B and output
vector C are generated in the same manner as the real cases. The zeros in B are
padded with small complex random numbers as in the case (ii), to mimic background
noise. Unlike the real cases, the complex envelope solutions evolve more slowly in
time. Therefore, a longer integration time and a larger snapshot sampling interval are
used. We use Nt =10 000 and Ni = 400 for the two cases. A total of 25 snapshots are
obtained for each case. In case (iii), we use Nr =4 for the stable-wavenumber case,
but Nr = 20 for the unstable-wavenumber case.

For the stable wavenumber, figure 6 shows that the envelopes approach the
equilibrium in a large-scale complex sinusoid. This run shows that a PBROM with
four complex states is remarkably accurate in capturing the original solution. As in
case (ii), the four PBPOD basis functions suggest that these functions are highly and
mutually non-orthogonal. For the unstable wavenumber, figure 7 shows envelopes
that are very irregular and clustered. Convergence is very slow. The trend suggests
that the solution will eventually reach an equilibrium with the real part of A(X, ∞)
settled at −1, but with the imaginary part of A(X, ∞) settled at an inverted hat-shaped
envelope. For this run, the PBROM requires 15 states. The agreement between the
original model and the PBROM is remarkable. Unlike the cases of real envelopes,
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the complex envelopes can shift the wavenumber of the cellular pattern away from
its critical value, kc.

After completing five simulation runs for cases (i)–(iii), it is of interest to summarize
the modified Hankel singular values associated with the five PBPODs. Unlike the
eigenvalues, MHSVs provide a more global measure that incorporates the effects of
input stimulation and output measurement, in addition to the dynamics. Figure 8
shows five curves, each containing the magnitude distribution of the 25 MHSVs. Note
that the larger the magnitude of the MHSV in each curve, the more controllable and
observable is the basis function that is associated with the MHSV.

The MHSV curve of the fronts has a steeper slope than the rest, indicating a
faster roll-off of the energy content of individual modes. For the fronts, the first few
modes carry most of the energy. For sinusoids in the second run in case (iii), the
energy content is more evenly distributed among all the modes. The second run in
case (ii) shows a sharp change of characteristics of the slope of the MHSVs after the
sixteenth MHSV. The choice of having to keep 15 states for the PBROM appears to
be consistent with the behaviour of the MHSV curve. For case (iii), the second run
shows a relatively flat MHSV slope compared with the rest of the runs. In this run,
the PBROM needs 20 states for a good approximation.

Nonlinear systems in general do not obey the principle of superposition. As a result,
the norm of the input vector can have an impact on the output errors. In case (i), we
have already compared the envelope snapshots generated by a rectangular pulse. We
consider this case to have a scale factor (SF) equal to 1. Now, we consider multiplying
the input vector by an SF of 0.1 to perform the same run, and then by an SF of
10. We compare the snapshots for the same integration period. The maximal error
between the original model envelopes and the corresponding envelopes in PBROM
occurs at X = 0. We plot the error at X =0. In figure 9, at t = 0 and for SF= 10,
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Figure 9. (Colour online) Errors of A(X, t) in the PBROM at X = 0 as a function of time.

the error is 4.68, well outside the box of the figure. The high value of this error is
largely due to the non-smoothness of the initial rectangular pulse. While a larger SF
initial condition causes significantly larger transient response in the output error, all
rapidly tend to zero, as A(0, t) in each case approaches the stable equilibrium value
of 1. We conclude that an SF uncertainty in the initial condition does not affect the
performance of the PBROM.

4.4. Comparison of open-loop simulations

We make a comparison of the open-loop responses based on case (iii), the complex
envelopes. Using the same B and C as before and for the same prescribed input
signal u(t), we compare the outputs between the original model and the PBROM. For
demonstration, we arbitrarily pick the following u(t) with two harmonic frequencies,

u(t) = 2 cos(πt) − 0.5s sin(πt) + 0.5 cos(2πt) − 1.2 sin(2πt). (4.1)

At t = 0, we set the initial conditions of the original model and PBROM to zero.
We integrate both models forward in time and plot the evolved envelope amplitude
as functions of time at three chosen locations. Figure 10 shows the real (a–c) and
imaginary parts (d–f ). The original-model output response is shown in solid line and
the PBROM output response in dashed line. The responses are shown at X =0 (a
and d ), X = L/4 (b and e) and X = L/2 (c and f ). In all three locations, the output
responses between the original model (solid lines) and the PBROM (dashed lines)
agree very well in that the lines in the plots are indistinguishable. Due to the fact
that the richness in frequency content of input is limited, the effectiveness of PBROM
demonstrated by open-loop simulations may not guarantee its effectiveness in the
feedback control simulations.

4.5. Comparison of PBPOD with other methods

The standard POD-based reduced-order model (PROM) appears to be the simplest
and easiest to construct, as long as the initial conditions can be chosen to extract
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Figure 10. (Colour online) Comparison of amplitude response between the original model
and PBROM for a complex sinusoid shape input and harmonic signal u(t).

the right set of POD modes. To illustrate the input-based POD, we use case (i), the
nonlinear front propagation, for a comparison study. Using the method described
in § 3.2, the empirical controllability Gramian yields a set of Nc eigenvectors, Xj

(j = 1, 2, . . . , Nc), which forms the input-based POD modes. This set of modes and its
transposes are used for projecting the original nonlinear system to form the PROM
in the reduced-order space. Three cases are studied. Using the original input vector B,
we show in figure 11 the PROM envelopes. Figure 11(a) shows the front envelopes,
which match very well with those shown in figure 1. This run used six POD modes for
projection. The sensitivity with respect to an input SF is investigated next, since for
nonlinear systems, such a sensitivity can exist. We consider a large input magnified
by SF = 10, again using six POD modes. Apart from some visible wavy distortions at
the bottom wall, the front envelopes basically preserve their shape (see figure 11b).
Keeping SF= 10 but increasing to 25 POD modes, we notice that the bottom wavy
distortions disappear as the resolution is improved. The three plots of figure 11
highlight the effectiveness of POD for the model reduction of the dynamics of the
nonlinear fronts. Although POD does not involve balancing between controllability
and observability, POD is likely to be adequate for the convection problem because
its linearized dynamics is self-adjoint.

Next, we compare PBPOD with the linearized BPOD. The BPOD modes for the
projection are obtained by Rowley’s method (2005). Without extending the BPOD
method to a linear time-varying system, we consider only the BPOD modes obtained
from a linearized system about the unstable equilibrium, namely, As = A(X, t) = 0.
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Figure 11. (Colour online) Reduced-order front simulations using POD with initial
conditions B (a) and 10 times B (b).

This approach is suggested by Rowley (2005). It is noted that for small-order systems
(see Lall et al. 2002), one can effectively obtain the empirical data for the construction
of the full-order quantity analogous to the controllability Gramian and form the full-
order transformation T. In the full-order case, the transformation S = T−1. Therefore,
no adjoint or observability data need to be computed independently. The approximate
approach of using the balanced modes from a linearized state about an equilibrium of
the nonlinear systems was suggested by Rowley (2005). However, it should be noted
that this procedure is not exact in the BPOD sense for the LTISS. Therefore, we refer
to the resulting reduced-order model as a linearized balanced nonlinear reduced-order
model (LBNROM), as opposed to BROM (see table 1).

For the amplitude equation, the linear state matrix is diagonal. The balanced
modes are actually the Fourier modes. We use the same integration and sampling
parameters as in the nonlinear front propagation. Figure 12 shows three runs in which
each run uses a different number of BPOD modes. In case (a), we use only six BPOD
modes. The envelopes become wavy when approaching the stable equilibrium, that
is, A(X, t) = 1. In case (b), the number of BPOD modes is increased to 10. The wavy
behaviour subsides considerably. Lastly, in case (c), we use 25 BPOD modes. The
wavy behaviour near the edges simply disappears with the improved resolution.

5. Feedback control of the nonlinear front propagation
The closed-loop study can require an elaborate effort. Instead of building a complete

linear-quadratic-Gaussian-type controller, we take a straightforward approach here
for demonstration purposes only. In the controller, instead of building a linear-
quadratic regulator, a control law with a scalar proportional gain is used (see Howle
1997; Tang & Bau 1998). The control law is used in cascade with a nonlinear estimator
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All Applicable to the LTISS Applicability to nonlinear systems

POD Galerkin-projection-based. No For nonlinear systems the controllable
balancing between input and data block can be easily constructed
output. May not work well similarly to those of linear systems.
for non-normal systems. The POD modes are readily extracted.

BPOD Block-diagonal balancing between BPOD is extended to time-periodic
controllability and observability. linear systems: see Ma, Rowley & Tadmor
Good for non-normal systems. (2010). For nonlinear systems, one has to
Provides a good approximation for compute the full-order transformation and
balanced realization if few energetic its inversion (see Lall et al. 2002), or
modes dominate the dynamics. use linearized BPOD or pseudo-balancing.

Linearized Linearized BPOD is the same Perform BPOD on the linearized model
BPOD as BPOD when applied to LTISS about a certain equilibrium state to obtain

BPOD modes for projecting the nonlinear
system, as suggested by Rowley (2005).
Its effectiveness depends on BPOD mode
shapes.

PBPOD Left upper-block balancing between Expected to give a better performance than
controllability and observability. POD since it balances the left upper block
Hybrid between POD and BPOD. of the Gramians. Observability block data
Performance for non-normal systems or observability Gramian is unavailable.
not demonstrated in this paper.

Table 1. Comparing the main features of POD, BPOD and PBPOD.
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Figure 13. (Colour online) Feedback-control loop block diagram.

based on the reduced-order model (see our block diagram of figure 13). In this section
the original model to be controlled is referred to as the plant model (upper block).
The same pulse shape imposed at t = 0 as in § 4.1 is used as the initial condition
here. However, for the current control design, we found that it is necessary to extend
the measurements from one collocation point to multiple collocation points. In the
development of the PBPOD, we assume that the envelope is measured only at one
point. Here, we assume that measurements are available at Nr points (assumed to
be evenly positioned within the end points of the layer). This number of output
channels is picked because Nr represents the order of the PBROM. The output
information is fed into the nonlinear, reduced-order controller (lower block). For a
multiple-input–multiple-output (MIMO) configuration with Nr channels, we replace
Bu(t) in the SISO case of the previous sections by Bu(t), where B is now an N × Nr

input matrix and u(t) is an Nr -channel control signal vector. The pseudo-balanced
reduced order model developed from the previous section is now employed to build
the controller, which consists of a nonlinear Kalman filter using a steady-state linear
quadratic estimator (LQE) gain. The Kalman gain is computed based on a linearized
model about X = 0.

The plant model is described by

ẋ = f (x) + Bu, (5.1)

where x is the true plant state vector, and according to (2.3), we have

f (x) = Lx − N(x). (5.2)

In the plant model, we assume that the input matrix is given by

B = T1, (5.3)

where T1 represents the PBPOD modes (see (3.13) in § 3). The control law represents
a feedback of all the reduced-order states with equal weightings,

u(t) = −Kp x̂r , (5.4)

where Kp is a scalar constant and x̂r is the reduced-order estimate state vector of
order Nr . We denote Bx̂r by x̂h, which represents a reconstruction of the truth state
vector based on the BPOD modes obtained from the BPOD algorithm. According
to the control law, it is important to note that the control term relies solely on
the reduced-order information fed to the plant. The quantity x̂h in Fourier space is
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inverse-transformed to Ah(X, t) in physical space, which can then be converted into
the actuation to be applied at the lower wall.

The nonlinear, reduced-order estimator is described by

˙̂xr = f r (x̂r ) − Kp x̂r + Kf (xm − x̂h). (5.5)

According to (3.27), we have

f r (x̂r ) = (Sp1LT1)x̂r − Sp1 N1. (5.6)

The second term on the right-hand side of (5.5) is −Kp x̂r because Sp1B= I. The
last term on the right-hand side involves Kf , a steady-state Nr × N Kalman gain
computed from an LQE model, in which the state matrix used in the filter is obtained
by linearization of f r (x̂r ) of (5.5) about the unstable equilibrium A(X, t) = 0. The N×1
measurement vector xm is generated as follows. Consider the output of the envelope
values at Nr evenly spaced collocation points within the layer, that is, A(Xj, t), where
j =1, . . . , Nr ; Nr is the order of the reduced-order model. Referring to (3.25), the
explicit Fourier relationship between the envelope values and the reduced-order states
is a1 = FiT1xr . Here, we consider xr as the truth version of the estimated state vector
x̂r . We denote the Nr entries of a1 at which the envelope is measured by a vector
ar , and the explicit form of the Nr × N inverse Fourier transformation matrix by
Fir . Upon inverting the matrix, we obtain xr = (FirT1)

−1ar . Since x ≈ T1xr , we have
derived the measured counterpart of x̂h as xm, given by

xm = T1(FirT1)
−1ar . (5.7)

The alternative form of the nonlinear, reduced-order estimator of (5.5) is

˙̂xr = f r (x̂r ) − Kp x̂r + Kf T1((FirT1)
−1ar − x̂r ), (5.8)

and ar contains the actual measured envelope values.
In the controller model, PBROM has Nr = 8 pseudo-balanced modes, which are

constructed from the original model of order N = 512 based on the PBPOD method.
The pair of transformation matrices (Sp1, T1) obtained using PBPOD are precomputed
and stored to be used for building the estimator model. The Nr × N steady-state
Kalman gain matrix is determined using the MATLAB linear quadratic estimator
(LQE) function. Both noise covariance matrices are assumed to be diagonal with
entries 10−2. The process and measurement noises are assumed to be uncorrelated. In
the plots, the envelope amplitude A(X, t) of the original model corresponds to the true
state vector, x, whereas the PBROM-reconstructed amplitude based on estimation,
Ah(X, t), corresponds to x̂h, which depends on the reduced-order estimated state
vector, xr .

We first show that Ah(X, t) tracks A(X, t) by letting Ah(X, 0) = 0 at t = 0,
corresponding to the estimator having no a priori knowledge of the plant initial
condition. In this case we let x̂r (0) = 0. We zero out the proportional gain (Kp = 0)
as well. The length of the simulation consists of 10 time units, with a time step of
0.0005. The simulation has 2 × 104 steps. The snapshots are sampled at an interval of
800 steps. A total of 25 snapshots are generated and shown in the plots. Figure 14
(a,b) corresponds to the evolved envelopes of the plant model and estimator model,
respectively. Figure 14(c) shows the estimator error. In figure 14(a–c), the last of the
25 envelopes is shown in a dotted line to highlight the final envelope shape in the
simulation. The estimator error converges to zero.

Next, we study two cases in the form of closed-loop responses, in both cases we use
Kp = 2. In the first case, no estimator state knowledge is assumed so that the initial



58 A. C. Or and J. L. Speyer

0 5 10 15 20 25

0.5

1.0(a)

(b)

(c)

A
(X

,t
)

Damped plant model envelopes

0 5 10 15 20 25

0.5

1.0

A
h(

X
,t

)

Corresponding estimator envelopes

0 5 10 15 20 25

A
−

A
h

x

0

0.05

0.10

Figure 14. (Colour online) The performance of the Kalman filter.
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Figure 15. (Colour online) Feedback-control responses with zero initial estimator states.

estimate states are set to zero at t = 0. Figure 15 shows that the envelope in the plant
model starts to damp, but then settles to a residual behaviour that shows a small
spatial oscillation (a). The reconstructed envelope of the estimator, Ah(X, t), initially
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Figure 16. (Colour online) Feedback-control responses with initial impulsive
estimator states.

starts to grow, but then appears to damp to zero (see b). The residual oscillatory
behaviour persists even by increasing Kp to 10 times.

In the second case, we assume a certain knowledge of the initial condition in the
plant model. The rectangular pulse used initially to generate the fronts is used to
obtain an initial condition for the estimator, with a scalar factor to increase the pulse
peak by 30 % to allow for a certain margin of uncertainty. With some knowledge of
the plant initial condition, figure 16 shows a substantial improvement in the residual
estimator behaviour. The oscillatory residual in the plant envelopes disappears. The
envelopes converge to zero.

6. Conclusion
We have investigated the order-reduction of the dynamical model governing

the spanwise amplitude modulation of convection patterns by the PBPOD. For
performance, different representative amplitude modulation patterns have been
considered. A few PBPOD modes generated by the method are capable of capturing
the envelope shapes very well by utilizing a small number of snapshots in the sampled
data.

Using the front propagation as an example, we have compared the performance of
PBPOD to POD, as well as PBPOD to the linearized BPOD. For an initial condition
magnified by a scale factor, PBPOD performs better than POD when using the
same small number of projective modes. For the nominal initial condition, or when
using more POD modes, both PBPOD and POD perform very well. When using the
same small number of projective modes, PBPOD and POD outperform the linearized
BPOD, in which the balanced modes correspond to the Fourier modes. However, as
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the number of linearized BPOD modes is increased, the linearized BPOD performance
is greatly improved.

The open-loop simulations are used to compare the outputs between the original
model and the PBROM, using the same prescribed control signal input. The only
drawback of the open-loop simulations is that the input signal cannot be rich enough
in frequency content as to guarantee the desired closed-loop responses if a reduced-
order controller is used.

Finally, we provide a feedback-control study. The knowledge of the envelope shape
is assumed at several collocation points at the plant output. A nonlinear low-order
estimator is used to estimate the envelope shape based on the small number of
PBPOD modes obtained. For demonstration, instead of building a sophisticated
control law, we only use a simple proportional feedback relationship. Using the
nonlinear front example, we show that the controller is effective in damping out
the nonlinear disturbance envelopes by the closed-loop actions. The performance of
feedback control is further enhanced if the estimator assumes a certain knowledge
about the initial disturbance shapes of the plant model. If the nonlinear filter starts
with a zero estimate, then a small residual oscillation will remain in the plant under
the closed-loop actions.

We thank Professor Clancy Rowley for his in-depth review of the submitted paper.
The earlier version contains a few key presentation errors of our method. With
Professor Rowley’s help, § 3 of this paper provides an enhanced description of the
model reduction methods. This work was supported by the Air Force Office of
Scientific Research under contract FA9550-05-C-0031.

Appendix. The input/output amplitude equation
A.1. The small-amplitude expansions

The derivation provides boundary-value solutions at each order, which are valid
for the free–free (FF) as well as rigid–rigid (RR) boundary conditions. Well-known
derivations in the literature, for example, by Newell & Whitehead 1969 (NW) and by
Cross & Hohenberg 1993 (CH), only treat the FF case. The present derivation also
incorporates the input and output elements.

The Boussinesq equations for two-dimensional convection rolls at infinite Prandtl
number (Pr) is considered,

∂tv + Lv = N(v), where L =

[
∇4 R∇2

1

−1 −∇2

]
,

N(v) =

[
0

−u∂xθ − w∂zθ

]
and v =

[
w

θ

]
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(A 1)

The horizontal velocity field, u(x, z, t), is obtained if the vertical velocity field w(x, z, t)
is known, through the continuity equation

∇ · u = ∂xu + ∂zw = 0. (A 2)

The boundary conditions for the velocity at both walls are either of RR or FF
type, respectively,

w(x, z, t) = ∂zw(x, z, t) = 0 at z = 0, 1,

w(x, z, t) = ∂zzw(x, z, t) = 0 at z = 0, 1.

}
(A 3)
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The temperature conditions are isothermal at the upper wall (z =1) and control
prescribed at the lower wall (z = 0),

θ(x, z, t) = 0 at z = 1. (A 4)

The lower-wall temperature condition incorporate at a control θc(x, y, t) (z = 0),

θ(x, z, t) = θc(x, t) at z = 0. (A 5)

Linear stability analysis determines a parabolic-shaped neutral curve, R = R0(k),
with a minimum at the critical wavenumber and Rayleigh number, (kc, Rc). For
R > Rc, R = Rc + ε2Rc defines a small parameter ε, which is of the order of the
symmetrical half-bandwidth of the unstable wavenumber, k, by allowing a scaling
k = kc + εK . To describe waveforms associated with the unstable band, we introduce
a stretched coordinate X = εx and a slow-time T = ε2t . Therefore, we express ∂x →
∂x +ε∂X , ∂t → ε2∂T , ∇2 by ∇2+ε2∂x∂X +ε2∂XX , and ∇4 by ∇4+ε4∂x∂X∇2+ε2(4∂xx∂XX +
2∂XX∇2) + · · · and so on.

CH expands upon (A 1). Equation (A 1) is expanded in the form L = L0 + εL1 +
L2 + · · · and v = εv0 + ε2v1 + ε3v2 + · · ·, respectively. The difficulty with this approach
occurs at the O(ε2) balance, with L0v1 = −L1v0 + N0. We substitute a horizontal
dependence of exp ikcx and the vertical dependence gives v0 = [f0(z), g0(z)]. The
adjoint solution is ṽ = [f0(z), k

2
cRcg0(z)]. At the critical point, we obtain 〈ṽ′L1v0〉 =0,

but noting that L1v0 �= 0 constitutes a resonant term. To determine the O(ε2)
solution, we go back to the linear balance, L0v0 = 0, and differentiate this equation
with respect to k; we obtain L1v0 = −L0∂kv0, where L1 = ∂kL0 at k = kc. Therefore,
at the critical point, the O(ε2) equation is L0(v1 + ∂kv0) = N0. Thus, v1 will
consist of two terms. The first term is generated by the nonlinear effect. The
second term is contributed by a term ∂kv0. When carried on to O(ε3) balance,
with the equation L0v2 = −L2v0 − L1v1 + N1, the second term will contribute to
−L1v1. Significantly, more algebraic steps are involved to carry this second term,
which turns out to affect only the diffusive-term coefficient of the amplitude
equation.

In NW, (A 1) is converted to a sixth-order scalar PDE in a single variable, in w (or
equivalently, in θ),

Lw = R∇2
1 (∂tθ + u∂xθ + w∂zθ), (A 6)

where L = (R∇2
1 − ∇6) with appropriate boundary conditions.

We expand L, R and θ in ε about the critical point,

L = L0 + εL1 + ε2L2 + · · · ,
R = Rc + ε2Rc,

w = εw0 + ε2w1 + ε3w2 + · · · , θ = εθ0 + ε2θ1 + ε3θ2 + · · · .

⎫⎪⎬
⎪⎭ (A 7)

Note that if R is expanded about an arbitrary point, then its expansion will contain
odd-parity terms as well. Note that R =Rc + ε2Rc serves as a definition for ε here.
The boundary conditions for inverting the sixth-order operator L0 are

w0 = �2w0 = 0, at z = 0, 1, (A 8)

and

∂zzw0 = 0 at z = 0, 1 for FF or ∂zw0 = 0 at z = 0, 1 for RR. (A 9)
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The linear balance is determined from L0w0 = 0, which gives a solution

u0 = − 1

ikc

A(X, t)f ′
0(z) exp ikcx + c.c.,

w0 = A(X, t)f0(z) exp ikcx + c.c.,

θ0 = A(X, t)g0(z) exp ikcx + c.c.,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 10)

where f ′(z) denotes the z-derivative of f (z) and c.c. stands for complex conjugate,
u0 is determined from w0 via continuity equation. With the FF boundary condition
and with the maximum of f0(z) (assumed positive) normalized to one, we have
f0(z) = sin(πz), for 0 � z � 1 and g0(z) = 2/(3π2) sin(πz). It is well known that we
have Rc = 27π4/4 and kc = π/

√
2. With RR boundary condition, f0(z) and g0(z) are real

functions to be solved numerically, with Rc =1707.762 and kc = 3.117, approximately.
The second-order balance in ε gives

L0w1 = −L1w0 − k2
cRc(u0∂xθ0 + w0∂zθ0). (A 11)

We note that the solution is different for the same-order expansion given by (A 1). We
expect L1w0 = 0 is satisfied at (kc, Rc), because by differentiating the characteristic
equation we have L0(k) = 0 (that defines the neutral curve) with respect to k, we have

L′
0(k) = −2kR0(k) − k2R′

0(k) − 3�2(k)�′(k) = L1(k) − k2R′
0(k) ≡ 0, (A 12)

where we have �(k) = (d2/dz2 − k2). At k = kc, we have R′
0(kc) = 0 because it is the

minimum, thus we have L1(kc) = 0.
The O(ε2) solution is given by

u1 = − 1

i2kc

A2f ′
1(z) exp i2kcx + c.c., w1 = A2f1(z) exp i2kcx + c.c.,

θ1 = |A|2g1m(z) + A2g1(z) exp i2kcx + c.c.,

⎫⎬
⎭ (A 13)

where g1m represents the x-mean temperature solution. For FF, f1 ≡ g1 ≡ 0 is
satisfied exactly, and g1m = 1/(3π3) sin 2πz. For RR boundary conditions, f1 and g1

do not vanish, but their contribution to the O(ε3) solvability condition is about two
orders of magnitude smaller than the contribution by the x-mean term.

For the O(ε3) balance, we have

L0w2 = −L2w0 −k2
cRc∂T θ0 −k2

cRc(u1∂xθ0 +w1∂zθ0 +u0∂xθ1 +w0∂zθ1)1 + · · · , (A 14)

where (.)1 denotes resonant terms only (proportional to exp ikcx) generated in the
expression (.). Note that the term L1w1 does not contain any resonant terms and
can be discarded. From the expansion, L2(kc) has the following form:

L2(kc) = −k2
cRc − 0.5R2, R2(kc) =

(
−Rc − 12k2

c� + 3�2
)
∂XX. (A 15)

Note that R2f0 is equal to R′′
c f0, where we have R′′

c = (d2R0(k)/dk2)k = kc
. For FF, we

have R′′
c =36π2.

A.2. Derivation of the coefficients of the amplitude equation

Without the control input, the O(ε3) balance yields the following amplitude equation
as the solvability condition:

k2
cRc〈f0g0〉∂T A= k2

cRc

〈
f 2

0

〉
A+ 1

2
k2

cR
′′
c

〈
f 2

0

〉
AXX − k2

cRc〈(β1 + β2)f0〉|A|2A, (A 16)

where β1(z) is associated with the mean temperature profile, and β2(z) is associated
with the resonant term generated by the second harmonics, i.e. proportional to
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Coefficient/Reference BC NW CH SLB Current

g′
1m(0) FF 2/(3π2) 2/(3π2) – 2/(3π2)

RR – – – 0.040906

τ0 FF 2/(3π2) 2/(3π2) – 2/(3π2)
RR – – – 0.05014

ξ 2
0 FF 8/(3π2) 8/(3π2) – 8/(3π2)

RR – – – 0.19973

χ0 FF 1/(3π2) 8/(3π2) – 1/(3π2)
RR – – – 0.03009

(Nu − 1)Rc/ FF – 1/0.5000 – 1/0.5000
(R − Rc) RR – – 1/0.6994* 1/0.74522

γ FF – – – 4/(3π)
RR – – – 0.31364

Table 2. Comparison of the coefficients of the amplitude equation.

exp i2kx. Their expressions are, respectively,

β1(z) = f0g
′
1m, β2(z) = 0.5f ′

1g0 + 2f ′
0g1 + f1g

′
0 + f0g

′
1. (A 17)

The amplitude equation is typically expressed in the standard form,

τ0∂T A = A + ξ 2
0 AXX − χ0|A|2A, (A 18)

with the coefficients given by

τ0 = 〈f0g0〉/
〈
f 2

0

〉
, ξ 2

0 = 0.5R′′
c /k2

cRc, χ0 = −〈f0(β1 + β2)〉/
〈
f 2

0

〉
. (A 19)

Note that for FF, β2(z) ≡ 0, but for RR, β2(z) contributes. The coefficients from NW,
CH and the current results are tabulated in table 2.

The numerical scheme developed for computing the various orders of solution is
identical for FF and RR except for the boundary conditions that distinguish between
the two. The scheme used 75 Chebyshev modes for the z -dependence functions. The
factor of 8 difference in χ0 between CH and ours is due to the different scaling factor
for normalizing f0. We have f0 = 1 at maximum, whereas CH has 2

√
2 instead.

Convection heat transport is defined by the Nusselt number, Nu ,

Nu − 1 = ε2|A|2|g′
1m(0)|. (A 20)

For steady rolls modulation, i.e. A= (1 − K2)1/2 exp(iKX), (A 18) gives

|A|2 =
1 − K2

χ0

. (A 21)

By definition ε2 = (R − Rc)/Rc. Eliminating ε and |A|2,
(Nu − 1)Rc

R − Rc

=
g′

1m(0)

χ0

(1 − K2). (A 22)

We obtain (Nu−1)Rc/(R−Rc) = 1/0.74522 for RR. If we neglect β2 the value becomes
1/0.74636. Schlüter, Lortz & Busse (1967) give a slightly different (Nu − 1)Rc/(R −
Rc) = 1/0.6994, which appeared in many references, for example, Drazin & Reid
(1982). This value for FF can be derived analytically, equal to 2 exactly, which checks
our numerical scheme.
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A.3. Derivation of the input/output elements of the amplitude equation

The amplitude equation governs envelope modulation of the convection cells.
Therefore, the control should affect the wave band about the critical point rather
than shift the critical point. Inspecting the solvability conditions indicates that the
control affects the dynamics at O(ε3) balance. In contrast, the stability threshold
shifts according to the O(ε0) balance (see Or et al. 2001).

To incorporate the input and output, the results from the previous section have
to be modified to incorporate the following O(ε3) control temperature boundary
condition, (A 5), at z = 0,

θ2(x, 0, t) = θc(x, t) = ε3b(X, T ) exp(ikcx) + c.c., (A 23)

where b(X, T ) is the input-shape function prescribed at the lower wall. The lower
order functions remain unchanged, the high-order function, g2(z), satisfies g2(0) = 1
and g2(1) = 0. We consider the O(ε3) balance of (A 1), noting that the control appears
only as a non-homogeneous term associated with the linear term L0v2. Multiplying
both sides of the O(ε3) equation by the adjoint solution, ṽ and integrating over
volume, we then evaluate 〈ṽT L0v2〉, by integration by parts. The explicit form of this
term is〈

f0

(
f iv

2 − 2k2
cf

′′
2 + k4

cf2 − k2
cRcg2

)〉
+

〈
k2

cRcg0

(
− f2 −

(
g′′

2 − k2
c g2

))〉
. (A 24)

Integration by parts of the above integrals and application of the boundary conditions
result in the only non-vanishing contribution from the control boundary condition,
(A 23), −k2

cRcg0(0)′g2(0). We define γ = k2
cRcg0(0)′g2(0); then for FF we obtain

γ =4/3π, and for RR we obtain γ = 0.31364. With control input, the amplitude
equation (A 16) becomes

τ0∂T A = A + ξ 2
0 AXX − χ0|A|2A + γ b. (A 25)

The term b(X, T ) provides the prescribed temporal-spatial input. Equivalently, using
the sixth-order PDE (A 14), we evaluate the integral < w0L0w2 >, where in (A 23),
the expression θ2 = θc becomes

θ2(x, 0, t) = �2(k)w2(x, 0, t) = θc(x, t) = ε3b(X, T ) exp(ikcx) + c.c. (A 26)

We obtain the same control term, −k2
cRcg

′
0(0)g2(0).

The output elements correspond to the mid-layer temperature at an array of evenly
spaced collocation points,

yj (T ) = g0

(
1
2

)
A(Xj, T ) + c.c., j = 1, 2, . . . , N. (A 27)

The set of collocation points is defined using the discrete Fourier transform (see § 2).
A single output uses only a single collocation point.
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